成本效益优于纯人工模式
规模化应用降低成本:在选民基数庞大的选举中(如千万级选民),单台设备的单次使用成本(含耗材)远低于雇佣数千名人工计票员的人力成本。
先进图像识别算法
机器学习训练模型:基于历史选票数据(含规范与不规范标记)训练 AI 算法,识别 “未填满方框”“跨边界填涂”“铅笔颜色不均” 等场景。例如,通过卷积神经网络(CNN)判断填涂区域的像素密度,区分 “有效填涂” 与 “无意划痕”。
动态阈值调整:根据选票印刷对比度自动调节识别阈值。例如,对深色背景选票提高亮度检测阈值,避免因印刷色差导致的误识别(如蓝色印章在浅色纸张上的阴影干扰)。
无效票智能标记:预设规则库(如 “单题选择>1 个选项”“标记超出指定区域”),系统自动将可疑选票标记为 “待审核” 并生成日志,人工仅需复核标记项,提升效率。
数据加密与校验
区块链存证:将扫描后的选票图像哈希值上链存储,确保数据不可篡改。任何对原始图像的修改都会导致哈希值变更,可通过区块链浏览器实时验证。
双重校验机制:
设备内检:扫描时同步进行 “图像 - 模板” 校验(如检测选票编号是否重复、页码是否正确),发现异常立即暂停并报警。
第三方校验:引入独立软件(如开源计票工具 OpenOCD)对扫描数据进行二次计算,对比设备输出结果,防止单一系统漏洞。
系统介绍:
投票选举系统(扫描仪版)与电子投票箱计票原理一致,具有更轻便、灵活的特点。适用于小型选举会议、分团选举或其他投票地点不集中的场景。
民主选举,特别是无记名投票,一般要具有机密性、性、可靠性、准确性、实用性和易操作性。
在企事业单位中,民主选举需要处理大量的数据。如果用人工去处理,不但费时费力,而且难以做好真实、公平,这些工作的成果也缺乏说服力。
如果采用高速扫描仪智能识别来读卡,然后配合能对数据作分析处理的投票选举统计软件,组成民主投票选举系统,不仅能大大降低统计得票数和有效票据的工作量,省时省力、快速准确,还能够消除投票人的思想顾虑,和减少其它不必要的人为因素干扰,使选举符合公平、公正、公开的标准。
采用高速扫描仪读选票的方式。现场联机阅读,多种选票混读。使用方便、识别准确,准确率,无误差。阅读、统计速度快。 在软件读卡过程中,可以根据用户的设定设置为多选无效、不选弃票等选项,自动统计总票数多少、有效票多少。可根据用户需求定义涂卡图像的识别如“√”、“O”。